
1

BioHPC

Computational Biology Application Suite

for High Performance Computing

Administrator’s guide

This document is under construction

Last updated: 2/6/2009

For questions and comments contact: cbsu@tc.cornell.edu

mailto:cbsu@tc.cornell.edu

2

Contents
1 Overview: BioHPC from users’ perspective ... 3

2 In depth: BioHPC from administrator’s perspective .. 4

2.1 Structural components ... 4

2.2 Functional components .. 6

2.2.1 Job submission ... 6

2.2.2 Job identification and data privacy ... 7

2.2.3 File access and job control .. 7

2.2.4 Keeping track of job status ... 9

2.2.5 Job monitoring ... 11

2.2.6 Caching cluster scheduler information .. 11

2.2.7 Displaying application statistics .. 12

3 Installation .. 12

4 BioHPC administration .. 15

4.1 User administration ... 15

4.2 Job monitoring and administration ... 17

4.3 Cluster administration .. 22

4.4 Application administration ... 23

4.5 Site setup ... 25

4.6 Sequence database administration... 26

5 Real-Time Clusters .. 29

6 Remote Clusters .. 30

7 PROGRAMMER’S GUIDE .. 34

8 APPENDIX .. 34

8.1 Structure of run.bat script .. 34

8.2 CBSUJOBS database ... 34

8.3 Programs and what they do ... 34

3

1 Overview: BioHPC from users’ perspective
Low cost of PC clusters makes them an attractive high-performance computing (HPC) solution in many

fields of science and business. However, effective utilization of computational power offered by such

clusters requires substantial technical and system programming knowledge, which is often a major

obstacle to an average user – typically an expert in his/her own field, but not necessarily in computer

programming or intricacies of cluster job schedulers.

 The objective of the BioHPC is to simplify access to resources of computer clusters. The prelude to

understanding of the components of the system is to look at a job submission process from the user’s

perspective. Instead of dealing with the actual cluster (or multiple clusters), batch scripts and job

scheduler, all the user has to do to submit a job and retrieve results is to interact with an easy-to-use

web interface. First, the user selects the application he/she wants to use. BioHPC offers a variety of

bioinformatics and computational biology applications, including parallelized BLAST, HMMER,

InterProScan, and quite a few population genetics programs. However, the structure of BioHPC is open,

so that arbitrary applications, not necessarily related to computational biology, may be easily added (see

subsequent sections). For each application, the interface features a custom submission web page –

essentially a web form collecting all the information needed to submit a job with this application, such

as input files to be uploaded, command line options, or, in the case of parallel applications, number of

processors to execute on. The user is also asked to provide a valid e-mail address where all information

about the job will be automatically sent. Optionally, if multiple compute clusters are available, the user

can also select the specific cluster where his job should run. A simple alternative is to simply rely on a

meta-scheduler built into BioHPC. After providing the necessary information, the user clicks the

“Submit” button, and shortly afterwards he receives an automated notification email informing him that

his job has been submitted. Two more emails will be sent later on: when the job starts executing, and

when it finishes for any reason. All the notification email messages contain http and ftp links to all the

relevant output files, some of them available during the run (so that the job progress monitoring is

possible), and some (final output files) available only after completion of the job. Links are also provided

which make it possible for a user to cancel a job if need be or to delete al the job’s data from the BioHPC

servers.

Being a web interface, BioHPC is able to serve any user equipped with a web browser and a valid e-mail

address – no accounts or passwords are necessary. There is, however, a possibility to create a pool of

the so-called “registered users” who will enjoy special privileges while working with BioHPC. Such users

are issued a password which they can use to log in to the interface prior to submitting the jobs. While

logged in, they may be entitled to submit more jobs with longer timeouts then other users and they will

have access to a handy job viewing tool, more convenient than notification emails. Access to some

applications, e.g. the ones consuming a lot of resources, may even be restricted to registered users only.

Registered users are also allowed to store their private databases (such as those used with BLAST)

permanently on the server. Finally, a subset of registered users may be given administrative privileges.

Administrators are responsible for configuring users’ privileges, cluster and application settings, and –

perhaps most importantly – for monitoring the jobs, ensuring their undisturbed flow through the

clusters, detecting and fixing hardware or software problems which may disrupt this flow.

4

BioHPC values user’s privacy. The job data generated by one user cannot be accessed by other users

except administrators. The employed security measures, although not completely watertight, proved

entirely sufficient for research purposes served by the existing BioHPC installation.

Some of the BioHPC data-mining applications, such as BLAST, HMMER, or InterProScan, require large

files to be replicated on local disks of each node of the cluster(s). Because of their functionality, these

files are usually referred to as “databases”, although they are not really databases in a sense of any

commonly used database engine, such as Microsoft SQL server, for example. This distinction is

important for further discussion, since a genuine MS SQL database is also utilized by BioHPC, for the

purpose of storing various parameters and job information. An important aspect of BioHPC, generally

hidden from a user, is application database administration, i.e., update and distribution of database files

on the nodes of the cluster(s).

2 In depth: BioHPC from administrator’s perspective
The BioHPC suite may be considered from two different points of view: structural and functuional.

Structurally, BioHPC is a suite of programs running on machines which have to satisfy certain hardware

and software prerequisites. These structural aspects of the suite are discussed in the Section 2.1. This

will be followed by a detailed description of functional aspects of BioHPC.

2.1 Structural components
Simply speaking, BioHPC is a collection of web pages implemented in ASP.NET (where ASP stands for

Active Server Pages), application executables [the actual programs submitted to run on the cluster(s)],

and various auxiliary programs called by the web pages or running periodically as scheduled tasks,

usually on the web server. In the spirit of ASP.NET, each web page has two basic components. The HTML

component is what is displayed in the browser on user’s local machine. If needed, javascript procedures

embedded in the HTML document allow for dynamic changes on the page based on the user’s inputs.

The second component is the “code behind” – a collection of procedures (written in C#) that run on the

web server when activated from a web page, usually by clicking on an appropriate button.

Various parameters and settings describing users, clusters, and applications are stored in an MS SQL

database (typically called CBSUJOBS), running on an SQL server, as well as in the web.config file

which determines the configuration of BioHPC web pages. The “code behind” the web pages contacts

the database and web.config on the regular basis. Most importantly, the CBSUJOBS database

contains information about each and every job submitted to the clusters. This information, stored in

records of the table jobstatus, is dynamically updated throughout the lifetime of a job by various

programs form the suite (to be discussed later). The most important entries in jobstatus are the job

ID (a unique integer number incremented by 1 each time a new job is registered), job control number (a

large signed randomly generated integer, which serves as a password for access to the files generated

by the job and its database entries – see Section 2.2.2 for more details), and a job status flag (an integer

representing the current status of the job, such as “queued”, “running”, “finished”, etc. – see Section

2.2.4 for more details). This flag will be referred to as database status of the job.

5

All nodes of compute clusters served by the BioHPC suite (except for the JSDL clusters – to be addressed

later) must have access to a common network drive, located on the file server. On the web server, this

drive must be seen as H: and the BioHPC-related files are stored in H:\CBSU. In particular, the

subdirectory H:\CBSU\JOBS holds job data input, output, and script files (each job has its own

subdirectory named after its job ID, for example, H:\CBSU\JOBS\12345). Subdirectories containing

application executables and auxiliary programs are also located in H:\CBSU. The exact names of these

subdirectories are configurable either in the CBSUJOBS database or in web.config file (see Sections

3 and 4 for more info). Jobs running on compute nodes access these directories on a regular basis. A

special perl driver mounting the H:drive on the web server at all times is a part of the BioHPC

installation. On compute clusters, the shared network drive does not have to be seen as H: (i.e., it does

not have to be explicitly mounted as such) - the UNC path can be specified instead (see Section 4.3).

BioHPC will automatically assign the letter H to the UNC path through the Windows net use command.

Upon the completion of a job, its job directory on the file server can, optionally, be replicated on

another machine acting as an ftp server. From this machine, data can be retrieved via the ftp protocol as

opposed to http used to get the data off the file server directories (the notification e-mails contain both

the http and ftp links to the job’s output files). This is especially important if the output files are large

and not suitable for http transfer. Besides, backing up job data on an ftp server increases storage

reliability. The ftp functionality can be configured in BioHPC if an ftp server is available.

The discussion above highlights the hardware and software requirements of BioHPC suite, summarized

here:

 At least one compute cluster running Windows Server 2003 with Compute Cluster Server (CCS)
pack or Windows HPC Server 2008 with the native MPI library and scheduler. As an alternative
to CCS, BioHPC also supports the Velocity scheduler with MPIPRO library, as well as JSDL job
submission protocol, so that remote clusters can also be served. More on remote clusters – in
Section 6.

 A web server running IIS, Microsoft Windows SDK, Microsoft .NET 3.0 Runtime to host the web
component of BioHPC. If changes in the source code are anticipated, MS Visual Studio 2005has
to be available on at least one machine able to connect to the web server and modify/recompile
the BioHPC solution there.

 A file server with a network drive accessible from all the nodes of all clusters (except for remote
clusters accessed via JSDL); on the web server this drive must be mounted as H:.

 An ftp server (optional).

 An MS SQL server to host the CBSUJOBS database. The free version, MS SQL Server Express
Advanced is sufficient.

 Interface Domain User (IDU) – a Windows domain account (name is configurable) serving as the
owner (in Windows sense) of all files and processes generated by BioHPC. The access rights for
IDU must allow submitting jobs to clusters, accessing files on network drive and others
(specified in detail in installation instructions).

In the original implementation of BioHPC, all the servers mentioned above are running on separate

machines. However, there is no reason why a single machine, such as the cluster head node, could not

be used to run all the needed services. Such a solution is entirely feasible, especially for small-size

clusters.

6

See http://biohpc.com/inst.aspx for more detailed instructions on how to install and configure the

hardware and software components of BioHPC.

2.2 Functional components
The web pages and auxiliary programs comprising BioHPC can be roughly grouped into a few classes,

each class providing a well defined function. Some of the web pages, most important from the users’

point of view, serve as job submission interfaces for various applications. The purpose of others is to

provide access to the jobs’ output files and other resources, and to provide accurate information about

the status of the jobs. A large subset of web pages and programs is dedicated to the administration of

BioHPC system. The next few subsections deal with general aspects of job submission, file access, job

control, and status monitoring. Discussion of these core functional components of BioHPC will set the

stage for the description of administrative tools, where all the nitty-gritty details will be discussed

further.

2.2.1 Job submission

Although both the HTML portion of a submission page and the associated “code behind” are

application-specific, they follow the general scheme to be outlined here.

When the page is presented to the user, a routine Page_Load is run on the server, which contacts the

SQL database to read off basic information about this user, clusters, and application programs he/she is

allowed to run. This information is used to initialize some of the controls on the page. Once a user fills

out a job submission form and clicks “Submit”, another procedure, usually called Submit_Click, is

executed on the server. This procedure collects and validates the entered data (for example, the

existence and format of the uploaded input files may be verified, correctness of the command line may

be checked, etc.), and, upon successful validation, it registers a job, i.e., creates a new record in a table

(called jobstatus) in the MS SQL database called CBSUJOBS. This record contains complete

information about the job, including the unique job ID (automatically generated by the database

engine), path of the job directory (still to be created) where all the job files will be stored, ID and e-mail

address of a user who submitted the job, cluster where the job will run, current status of the job,

timeout, requested number of processors, and other parameters – some of which (e.g., job status) will

change dynamically throughout the job’s lifetime, as described in subsequent sections.

Submit_Click then proceeds to create a job directory, named after the job ID, within the network

file system accessible from all the compute nodes of the cluster (e.g., H:\CBSU\JOBS\12345, where

job ID is 12345), and saves the input files in this directory. Before the job can be submitted,

Submit_Click has to select a proper cluster using the BioHPC built-in meta-scheduler, or, if a specific

cluster was requested by the user, it has to verify that this cluster is appropriate for the job (for

example, that the requested number of processors does not exceed the total number of processor in the

cluster). The procedure then constructs a DOS batch script, usually called run.bat, to be submitted via

cluster scheduler and eventually to be run on one of the compute nodes the scheduler will assign to the

job. The script consists of commands that first create job-specific temporary directories on local scratch

disks on all compute nodes assigned to the job, then copy all the necessary input files from the job

http://biohpc.com/inst.aspx

7

directory to the local scratch directories, launch the actual application executable, and then copy any

output files from the local disks back to the job directory. Section 8.1 outlines general structure of this

script. Finally, after run.bat is constructed and saved to the job directory, Submit_Click calls

another procedure, which interfaces to the cluster scheduler and actually places run.bat in the

cluster queue on behalf of the Interface Domain User (IDU) – a special account defined in Windows

domain. The job status field in the database is set to QUEUED and a notification e-mail is sent to the

user. At this point, the user is presented with an info page reporting on the submission and containing

links to the output and log files. The same links appear in the e-mail notification message. With the help

of these links, the user will be able to monitor progress of the job and retrieve output files when the job

ends (more on file retrieval and job monitoring - in the Sections 2.2.3 and 2.2.5, respectively). The work

of the submission page and its “code behind” is now complete and the job is handed over to the cluster

scheduler.

It should be stressed that any distinction between the users is effective only at the level of BioHPC. All

jobs, regardless of which users created them in BioHPC, are seen by the cluster scheduler as belonging

to a single Windows domain account, the IDU. This domain user also owns all the processes running on

the web server and compute clusters on behalf of BioHPC (web pages, auxiliary programs, applications,

etc.). The information about the original owner/creator of the job is stored in the jobstatus table in

the CBSUJOBS database and utilized only by BioHPC. This way, the cluster resources can be made

publicly available without setting up separate domain accounts for all users.

2.2.2 Job identification and data privacy

The most important entries in jobstatus table are the job ID and the so-called control number. The

job ID is simply a unique integer incremented by 1 each time a new job is created. The control number is

a large signed random integer generated and recorded in jobstatus at the time of job creation.

Although job ID alone would be sufficient to identify a job, all operations on job data (files or database

entries) within BioHPC are performed by web programs (*.aspx) which require both the job ID and the

control number to be supplied as arguments. Prior to performing any actions, these programs verify that

the control number they get as an argument does match the one originally recorded in the jobstatus

for a given job ID. While job ID is essentially public information, the matching control number is known

only to the user who submitted the job (and to BioHPC administrators and programs run by them). Thus,

the control number can be thought of as a password to the resources of the job with a given job ID. All

this does not mean that the user is forced to remember bulky control numbers for all his jobs. These

numbers are hidden quite deeply, embedded in the HTML links the user gets in his notification emails.

Simply clicking on such a link ensures that both job ID and the matching control number are properly

passed on to the appropriate web program. Subsequent sections give examples of this policy at work.

2.2.3 File access and job control

Once the job, or more specifically – the run.bat script is placed in the cluster queue by the

Submit_Click procedure, it starts living its own life as determined by the cluster scheduler.

Typically, it will wait a while for the nodes to become available, then it will start, and finally it will end or

get killed by the cluster scheduler if the timeout is exceeded. While all this happens independently of

BioHPC, the users and administrators need to be able to use BioHPC to check the status of the job (is it

8

still waiting, running, or did it finish?) and to interact with the job both while it is still running and after it

completes. Interactions of a user with a job, typically involving file access and canceling, are described in

this Section.

Each job produces application-specific output files stored, upon job completion, in a job-specific job

directory on a network file system. From the point of view of the operating system, all these files belong

to the IDU domain account. Access to these files is provided to the original job owner using a web page

showfile.aspx, launched from the user’s browser and running on the server on behalf of the IDU. A

typical invocation of the showfile.aspx program is of the form of an http link similar to

http://BioHPC_location/showfile.aspx?jobid=25240&cntrl=532239145&fileid=2&mode=show

Links like the one above are embedded in the e-mail notification messages sent to the users at various

stages of the job’s “life” in BioHPC, so that all that’s required to launch showfile.aspx is a click of a

mouse. The integer parameter fileid is translated by showfile.aspx into the name of the file to

retrieve. The translation is done by calling the application-specific public method FileName – a part of

the “code-behind” of the application’s submission page. A notification e-mail can contain many different

links to showfile.aspx pointing to different files specific to a given application. The file indicated by

argument fileid is presented to the user in the way specified by the argument mode. In this example,

mode=show will display the file in a browser window. Other modes supported by showfile.aspx

allow to download the file from the job directory using the http protocol (mode=http), or from the job

directory replica on the ftp server, if present, using the ftp protocol (mode=ftp). It can be seen that

both job ID and the control number are among the parameters passed on to the program. In the

beginning, showfile.aspx verifies that the control number given as an argument matches that

recorded in the jobstatus table for this particular job id. Access to the file is granted only after

successful control number verification. Since the notification e-mails about a given job are only sent to

the owner of this job, he/she is the only one (besides administrators) in possession of the control

number, which ensures data privacy.

Another web interface program, called cbsujob.aspx, allows the users and administrators to control

some aspects of a job after it is submitted or after it completes. A call similar to

http://BioHPC_location/cbsujob.aspx?jobid=25240&cntrl=532239145&fileid=2&action=cancel

can be used to control (in this case: cancel) the job with a given job ID and the matching control number.

The values of the parameter action include

 cancel – cancel the job

 restart - requeue the job

 stop - stop the job without changing its database status

 changestat - change status of the job in the database

 archive - remove from the list of jobs shown by monitoring tools – see Section 4.2.

 userrestart - requeue by a user

 imstop - manipulate the file IMrun – specific for the application program IM

9

 showstats - show the database entries of the job: current status of the job, cluster it is/was
queued on, timeout, start/stop date, etc.

 datadel – delete all the job’s data from the BioHPC fileserver and ftp server, if present.

Most of the actions are general and independent of the application. Others (like restart) have to

be customized for some applications and so the code of cbsujob.aspx has to contain some

application specific routines. While cancel, showstats, datadel, and imstop are available to all

users, the other actions are generally reserved for administrators only and executed from within the

administrative web pages. As it was the case with the showfile.aspx program, the appropriate

cbsujob.aspx links are embedded within notification e-mails and administration pages.

2.2.4 Keeping track of job status

An important aspect of BioHPC is to provide users with up to date information about the status of their

jobs. As mentioned before, users and administrators can retrieve this information from the

jobstatus table of the CBSUJOBS database. To ensure that this database job status is accurate, it

has to be reconciled with the scheduler job status, as obtained by querying the cluster scheduler. Here

we focus on how BioHPC keeps the database and scheduler job statuses coordinated and how users are

notified about status changes.

As mentioned before, the Submit_Click function of the submission page leaves the job marked as

QUEUED in the jobstatus table. To keep the job information up to date, the database status needs

to be changed once the job starts executing. This change is accomplished by a program called

cbsufinalize.exe, executed by the run.bat script shortly after the latter starts, but before it

launches the actual application executable. The syntax of the command is

cbsufinalize.exe <jobID> <0 | 1> <timeout> <cntr_num> [nomail | send | sys]

where the last (optional) argument controls if and to whom an e-mail notification will be sent. The

parameters passed on to cbsufinalize.exe include the indicator 0 or 1, depending on whether it is

called in the beginning or at the end of run.bat, respectively, the job ID and control number (both

generated earlier within Submit_Click), and also the timeout in minutes (see Applications

administration for more info about timeouts). The cbsufinalize.exe program contacts, in turn,

the web program cbsufinalize.aspx running on the web server. The latter program recognizes

the parameter “0” as indication that the calling cbsufinalize.exe marks the beginning of

run.bat and thus it updates the database status of the job (as defined by job ID and the control

number) to RUNNING. If the last parameter in the call to cbsufinalize.exe is omitted (as it is in

this case), or set to send, an e-mail is sent to the user notifying him about the start of the job.

The advantage of having a web application (cbsufinalize.aspx) do the task of updating the

database is that it can be easily called even from remote locations, such as JSDL-connected clusters.

Despite this openness, the chance of compromising the database by unauthorized user is rather small.

This is because before contacting the database, the program verifies that the control number passed on

10

as a parameter matches the control number generated for this job and recorded in the database at the

time of submission. This is an example of job identification policy (described earlier) at work.

The cbsufinalize.exe program (and cbsufinalize.aspx) is called once again, this time at

the very end of run.bat, after the application program finishes running. The indicator flag is now set

to “1”, which tells cbsufinalize.axpx to change the database status of the job from RUNNING to

a finished state. There is, however, not just one state a job may end up in when it finishes running. The

cbsufinalize.aspx program is able to distinguish between several such end states:

 FINISHED CORRECTLY: when everything went fine and all output files are present and in order.

 FAILED/USER INPUT: when the job failed due to some user-generated errors in input data.

 FAILED: when the job fails for unknown reasons. In this case, an e-mail notification will be sent
to the administrator rather than the user.

 FAILED/stalled: when the job failed for unknown reasons and output files have not been
updated for a long time. An e-mail notification will be sent to the administrator rather than the
user.

 FINISHED PREMATURELY: when the job did not complete, but generated output files and there
was no obvious error message generated (this situation is typical in case of a timeout).

 FINISHED PREMATURELY/user notifed: when an e-mail notification was sent to the user after
job FINISHED PREMATURELY; when run from run.bat, cbsufinalize.aspx will send such
message out automatically.

The decision about which of these states to put the job in is made by cbsufinalize.aspx based on

the analysis of output files generated by the job. Since different applications generate different kinds of

files, such an analysis is, in general, application-specific. It is accomplished by calling an application-

specific procedure Jobstatus, which is a part of the “code-behind” of the application web page in

question, and is defined as a “public static” method (i.e., available from other web pages, including

cbsufinalize.aspx). Jobstatus scans the job directory searching for output files which a given

application should have generated, analyzes these files searching for error messages which may indicate

that the user made a mistake in the input, and returns an indicator which allows

cbsufinalize.aspx to update the job’s database status with the proper flag and send the

appropriate e-mail message. This message is usually sent to the user who submitted the job, except for

the case when the end status is determined as FAILED or FAILED/stalled. In these cases the e-mail is

sent to the BioHPC administrators urging them to look closer at the reasons of the job’s failure. These

reasons may include hardware failures, problems with the application executables, or an input error

condition previously unaccounted for by the application’s Jobstatus procedure. After

troubleshooting the cause of the failure the administrator has an option to change the job’s status (for

example, to FINISHED or FAILED/USER INPUT) and notifying the user, or to re-queue the job (for

example, after a hardware problem is fixed). See Job administration for more information about job

control.

Special attention must be given to the case when a job times out and is killed by the scheduler before

the final call to cbsufinalize.exe can be executed. The database status of such job is still

11

RUNNING, although it is no longer in the cluster queue. BioHPC handles such situations with the help of

an auxiliary program called stardaemon.exe. This program, run periodically as a Windows

“scheduled task” on the web server, scans the jobstatus table for jobs with database status

RUNNING, but which cannot be found in the cluster queue. For each such job, stardaemon.exe

executes the corresponding cbsufinalize.exe command, i.e., it finishes off the work that could

not have been finished by run.bat due to timeout. Another function of stardaemon.exe is to

automatically archive (see Job monitoring and administration/Active?) finished jobs older than a

number of days specified when running the site setup program setup.aspx (see INSTALLATION).

Finally, database job status updates can also result from actions (like cancel, restart, or

changestat) taken by the job control interface cbsujob.aspx, described earlier. In such cases, the

latter program handles those updates.

2.2.5 Job monitoring

As mentioned before, the primary way BioHPC communicates with a user is through e-mail notifications

sent each time a job is submitted, when it starts executing, and when it ends. The links to

showfile.aspx and cbsujob.aspx (with appropriate parameters) allow for checking of the job

status and provide access to the log and output files, which can be used to monitor job progress. A link is

also provided which allows a user to cancel the job.

The job monitoring task is even simpler for registered users (for details - see User Administration), who

have access to a handy web tool MyJobs. This tool collects and presents the information about all the

jobs (present and past) of a given user, displaying the current job status and links to output files. MyJobs

essentially eliminates the need to handle multiple e-mail notifications, which may become a problem if

BioHPC resources are used frequently. An extended version of this tool, available to BioHPC

administrators, is described in Job administration.

2.2.6 Caching cluster scheduler information

Several components of BioHPC call cluster scheduler APIs in order to retrieve information about queued

and running jobs and the number of nodes currently occupied and available on each cluster. This

information is needed, for example, upon job submission, when BioHPC is trying to decide which cluster

to submit the job to. It is also used by job-monitoring tools, such as MyJobs, which display the job

status. Retrieval of information from cluster schedulers may be a time consuming task, especially if

several big and busy clusters are involved, and may significantly slow down the BioHPC functions

mentioned above. To remedy this slowdown, BioHPC uses a caching mechanism. The information

obtained by calling scheduler APIs is stored in a SQL table (called cache) in the CBSUJOBS database

for quick retrieval and typically this is where the requesting BioHPC functions take it from. However, by

checking the timestamps on the cache records, these functions can determine when the cached

information is too old. In such a case, they contact the schedulers directly through the APIs and then

update the selected cache records for future use. This happens also if the requested information cannot

be found in the cache. In this way, the cache is constantly updated by the functions that use it. A cache

record will be updated if it is older than the cache timeout parameter (cachetimeout) specified when

running the site setup program setup.aspx (see INSTALLATION). Our recommended value of this

12

parameter is 15 minutes. Increasing this timeout will make BioHPC run somewhat smoother, but the job

listings and submission decisions may be based on cluster information which is not completely up to

date. Setting cachetimeout to zero will cause BioHPC to bypass the caching mechanism and always

obtain current job/node information directly from cluster schedulers.

In addition to the dynamic update of the cache by the requesting functions, BioHPC uses a special utility

program called cache.exe, which (similarly to stardaemon.exe) is set to run periodically on the

web server as a scheduled task. Each time it runs, this program refreshes the cache table completely.

Since cache.exe runs in the background, independently of the BioHPC web pages, it does not slow

these pages down.

2.2.7 Displaying application statistics

A link Application Statistic in the (MISCELLANEOUS category) displays a table summarizing the numbers

of job submissions and failed jobs for all applications.

3 Installation
This Section is still under construction. A comprehensive sketch of the installation procedure can be

found at http://biohpc.com/inst.aspx.

As a part of the installation process, a web program setup.aspx has to be run to customize the

BioHPC site by defining certain vital parameters in the web.config file. Due to confidential nature of

some of these parameters, setup.aspx will only open on the web server where the site resides. Here

is the summary of the parameters the program will ask for:

http://biohpc.com/inst.aspx

13

General Settings

Address: URL of the site, e.g., http://my_biohpc_site/

AddressTestSite: URL of the developer’s version of the site, e.g., http://my_biohps_site/tst/

TestSite: TRUE (if this web.config is a part of developer’s version) or FALSE (otherwise)

Title: title string to be displayed on top of each of BioHPC pages (e.g., My BioHPC site)

Subtitle: subtitle string to be displayed underneath the title (e.g., my favorite site)

Logo: a picture to be displayed in the top-left corner of each of BioHPC pages (e.g., mylogo.jpg)

BioHPCMail: contact e-mail address for users to communicate with the site admins

BioHPCAdminMail: e-mail address(es) of the site administrators, where various BioHPC-generated

messages will be directed (such as those about failed jobs)

SMTPServer: name of the machine responsible for handling e-mail

FtpJobsUrl: URL of the job directory on ftp server, if present, e.g.,

ftp://my_ftp_srv.my_domain.edu/JOBS/ (optional)

FtpPblastUrl: URL of the PBLAST directory in the ftp server, if present, e.g.,

ftp://my_ftp_srv.my_domain.edu/PBLAST/ (optional); this directory is typically used by

selected users to upload large files, not suitable for http transfer

FtpJobsUnc: UNC of the job directory on ftp server, if present, e.g., \\my_ftp_srv\share\JOBS\

(optional)

FtpPblastUnc: UNC of the PBLAST directory on ftp server, if present, e.g.,

\\my_ftp_srv\share\PBLAST\ (optional)

Organization: name of your organization, e.g., CBSU; will be displayed on application web pages (in the

sentence informing the user where his calculations will be carried out).

OrganizationURL: URL of your organization’s web page; will be displayed on application web pages (in

the sentence informing the user where his calculations will be carried out).

WebDir: directory on web server where BioHPC is installed, e.g., T:\Inetpub\wwwroot\BioHPC\

InterfaceUserName: or Interface Domain User (IDU) – a domain account to own all files, processes, and

jobs generated by BioHPC, e.g., my_domain\biohpc_user

InterfaceUserPass: password for IDU

14

Zip: path to the zip.exe program on the web server, e.g., H:\CBSU\unixutils\zip.exe.

Needed by programs serving remote clusters accessed through JSDL and ftp.

UnZip: path to the unzip.exe program on the web server, e.g.,

H:\CBSU\unixutils\unzip.exe. Needed by programs serving clusters connected through JSDL.

jt.exe: path to the jt.exe program on the web server, e.g., H:\CBSU\jt.exe, this program

(downloadable from Microsoft) is a part of the real-time (RT) scheduler (described in RT scheduler –

under construction)

perl: path to perl executable on the web server, e.g., C:\Perl\bin\perl.exe

vsched: path to Velocity scheduler executable, e.g., C:\Program Files (x86)\Velocity\

(optional, needed only if clusters running Velocity are present)

RT_timeout: timeout (in minutes) for real-time (RT) jobs

autoarchive: number of days; jobs older than this and having unambiguous end status will be

automatically archived (see Job monitoring and administration/Active?) by the stardaemon.exe

scheduled task (see Keeping track of job status).

cachetimeout: e.g., 900; given in seconds; when a list of queued and running jobs and/or node status

information is obtained by contacting the cluster scheduler, it is stored in an database cache from which

it can be quickly retrieved (without contacting the scheduler) within cachetimeout minutes of the

original call. If the current cluster status information is needed after cachetimeout, the cluster scheduler

will be contacted again to refresh the cache. If cachetimeout is set to zero, the cashing mechanism will

be bypassed and job/node information will be retrieved by calling scheduler APIs directly each time.

DBdirPrivate: directory to store user’s private BLAST databases, e.g., H:\CBSU\blastdata2

echeck: whether to enable e-mail verification (ON or OFF)

echeck.timeout: timeout (in days) for cached e-mail addresses

permissive_https: parameter used for remote clusters connected through JSDL.

stat_cont_date: default: blank. Used to display job submission statistics (page cbsujobstat.aspx).

If left blank, only jobs submitted through this installation of BioHPC will be counted in the statistics. If

set to a date, e.g., 6/13/2003 (prior to inception date of this BioHPC installation), job statistics will

include the pre-BioHPC period starting on stat_cont_date. To use this option, the pre-BioHPC data

(number of jobs and number of failed jobs) have to be entered in columns statcorr and

statcorr_f, respectively, of the table apps in CBSUJOBS database.

servertemp: e.g. T:\ - directory on the web server, where some application submission programs will

create their temporary files and subdirectories, needed, for example, for input verification.

15

Miscellaneous links

optional; these links will show up at the bottom of the right-hand-side bar on each BioHPC web page,

underneath the application links. The format is <description>|<url>, for example, CBSU

Home|http://cbsu.tc.cornell.edu/

SQL Database connection for BioHPC

server hostname: name of the machine running MS SQL Server, e.g., my_sql_srv

database name: for example, CBSUJOBS

user id: owner of the database as configured in MS SQL Server, e.g., cbsujobs_owner

password: password for database access

workstation id: name of the web server, as defined in the Windows domain.

persist security info: e.g., True, SQL server connection parameter

packet size: e.g., 4096, SQL server connection parameter

The program setup.aspx can also configure settings for sequence data retrieval from the MS SQL

database (if application RetrieveSeq is installed which uses such sequence database) as well as the

parameters of clusters connected through JSDL protocol (if present).

4 BioHPC administration
The administrative pages can be accessed from any BioHPC page by clicking on the link Administration

on the top bar. This link is only available for registered users with administrator status. A default

administrative user, called admin@biohpc (password: BioHPC4All), is defined during BioHPC setup – it

can and should be changed immediately after the setup is complete (see User administration for

details).

What opens up is after clicking on the Administration link is a page containing links to all administrative

functions of BioHPC. In the following, these functions will be described in detail.

4.1 User administration
Information about the registered users is held in the table users in the CBSUJOBS database. Tables

useraccess and userdbaccess determine access different users have to different applications

and databases, respectively. A related table is echeck, which holds information about the recently

16

used e-mail addresses (vide infra). The user administration pages access and modify these tables. For

detailed description of the tables please consult the Appendix.

Clicking on Manage users button opens a list of all users registered with BioHPC, with basic information

about them. The display can be adjusted by applying filters over any column and/or checking/un-

checking individual users. The user can be deleted using the corresponding Delete link the user’s

information can be edited using the Edit link. The editable fields are: e-mail address (this will serve as

the user’s “login name” and as such is required), full name, institution, group (all optional – introduced

for organization purposes), and status. The latter field determines whether the user is a regular

registered user (Active), an administrator (Admin), or a registered user whose access has been blocked

(Inactive). The Edit link can also be used by an administrator to change the user’s password. The user ID

cannot be edited – it is assigned automatically by the database upon user creation. After filling

up/adjusting the editable fields – click Submit Changes button to update the users table.

After updating basic user information under the Edit link, it is possible to configure the user’s application

and database access, using the Configure Apps and Configure DB buttons, respectively. For example,

Configure Apps will open a list of all available applications, each with a checkbox next to it. Checking the

checkbox will make the corresponding application available to the user (after Submit Changes is clicked,

which will produce an entry in the useraccess table). Applications declared as “available to

everyone” (see Application administration) will have their checkboxes automatically checked and

shaded out (not modifiable). Configure DB button works in an analogous way, with databases instead of

applications and table userdbaccess instead of useraccess.

The main Manage users page features a set of action buttons located above the user list:

The button Add New User will open a dialog with basic information fields to enter for a new user, the

most important one being the e-mail address. A randomly generated initial password will be provided

(which can be edited, if desired). Clicking Add User will generate a new entry in the user table (i.e.,

create a new user), providing a unique numeric user ID, and send a short “welcome e-mail” to the new

user containing the initial password and instructions on logging in and changing the password. The

application and database configuration buttons will also be displayed, allowing the proper adjustments

to be made for the new user.

The buttons Edit Checked, Apps Checked, and DB Checked allow to modify the affiliation information

and status, applications, and database access, respectively, of the whole group of users (the “checked”

ones). Multiple users can be added at the same time (via Add Multiple Users), deleted at the same time

(via Delete Checked), or e-mailed at the same time (Email Checked). Using the Post Message button an

administrator can post a general message visible on all BioHPC pages (for example, about the upcoming

cluster maintenance), located on top of the page. The message should be entered in HTML in the text

box provided. An existing message can be removed using the Clear button.

The first two entries in the users table are reserved for two special users: “guest” and “deleted” (these

users will not be displayed in the user table in Manage Users). The user “guest” (with user ID equal to 1)

represents all users who are not registered. If somebody accesses BioHPC and does not log in (because

17

he is not registered or because he does not want to log in), his session is automatically treated as

opened by the “guest” user. The user “deleted” (user ID equal to 2) has been defined in order to inherit

all job entries orphaned by users who submitted the jobs as registered users, but have since been

removed from the registered user database.

An important aspect of user administration is verification and handling of e-mail addresses. A valid e-

mail address is essential for the communication between BioHPC and users. Therefore, an e-mail

address provided by the user at submission time is first verified (from within the submission page) by

contacting the user’s e-mail server. If errors occur, the job is not submitted. If, on the other hand,

verification is successful, the address is stored in table echeck, which plays a role of a cache of valid e-

mail addresses. Next time this address is requested, it will be immediately accepted based on its

presence in cache rather than by verifying the e-mail server again. Since the e-mail verification process is

not perfect, some e-mail addresses need to be recognized as valid even if they fail the verification. Such

addresses can be manually entered into the table echeck and marked as “trusted”. A web tool for

maintaining the e-mail address cache and the list of trusted e-mails can be accessed from the main

administration page through the E-mail check button. The tool also provides a way to verify e-mails

independently of job submission pages.

4.2 Job monitoring and administration
Monitoring and controlling the flow of jobs submitted to the clusters is the most frequently used

administrative feature of BioHPC. It is accessible to any administrative user directly from any BioHPC

web page using the link Manage jobs on the upper bar, as well as through the main Administration link.

The link takes us to the Job Admin page containing a table where rows correspond to the active (this

term will be defined later) jobs and columns represent most of the fields found in the database table

jobstatus. Thus, the table contains full specification of each job, including the current status. What’s

even more important, it also provides job control functions (such as manual status change, cancel, and

requeue) as well as direct access to job directories. To focus attention, jobs being displayed can be

filtered according to any subset of parameter fields. Operations on multiple jobs (those “checked” using

the checkboxes in the leftmost column of the table) may be performed with just a few mouse-clicks. At

the bottom part of the page, the queued and running job information is summarized on a per cluster

basis. This allows for a quick “at-a-glance” assessment of the current load and job distribution among

various clusters. The Job Admin page will refresh automatically every 15 minutes. It is a common

practice among the BioHPC administrators to have this page always open to stay on top of things.

The meaning of various columns in the Job Admin table is as follows:

ID: the job ID automatically generated at the time of submission. It uniquely identifies the job to BioHPC

and does not change even if the job is re-queued.

Appname: the name of the application, as configured in Application administration.

Submitted: time when the job was first submitted. Will not change even if the job is later re-queued.

18

User: e-mail address of the user who submitted the job. Clicking on the address will open an e-mail

application ready to send a message to this user.

Cluster: cluster where the job is (or last was) in the queue. May change if the job is re-queued on

another cluster. The cluster originally selected by the user at submission time is given in parentheses

(this may be “Auto” if the user relied on BioHPC to select the cluster).

Nodes/(CPU): in parentheses – the total number of processors (cores) the job is occupying on a given

cluster. Some MPI applications may be configured (in Application administration) to exclusively occupy

whole multi-core nodes – in such a case the number of such nodes is shown outside of parentheses and

the symbol “x” is displayed to indicate the exclusive character of the job.

Cluster job ID: an identifier assigned to the job by the cluster scheduler (different from the unique

BioHPC job ID); will change when the job is re-queued.

Timeout: time (in minutes) after which the job will be killed by the cluster scheduler even if not yet

finished.

Started: time when the job started executing. This field is empty for jobs with status QUEUED.

Ending: for finished jobs – the time the job finished or the time of the last status change (which may

have been manually done by an admin), whichever is later; for running jobs – the latest anticipated end

time (i.e., Started + Timeout). This filed is empty for jobs with status QUEUED.

Jobname: name of the job, as specified by the user at submission.

Status: current status of the job, determined from the entry on the jobstatus table and from the job

listing obtained from the cluster scheduler (typically, these are cached – see Section 2.2.6). Some of the

possible values of job status have been discussed in Section 2.2.4. The complete list is as follows:

 SUBMITTING: the job is listed as “queued” in the CBSUJOBS database, but not yet known to
cluster scheduler.

 QUEUED/SUBMITTED: the job is listed as “queued” both in the CBSUJOBS database and by the
cluster scheduler.

 RUNNING: the job is listed as “running” both in the CBSUJOBS database and by the cluster
scheduler. If the output files generated by the job did not change recently (as specified in the
Logfile timeout filed in Application administration), the label “stalled” will also be displayed.
This is to bring it to the administrator’s attention that something may be wrong with the job.

 CANCELED: the job has been canceled by user or administrator; it is no longer in cluster queue,
and its database status is “canceled”.

 FINISHED CORRECTLY: when everything went fine and all output files are present and in order.

 FAILED/USER INPUT: when the job failed due to some user-generated errors in input data.

 FAILED: when the job fails for unknown reasons. In this case, an e-mail notification will be sent
to the administrator rather than the user.

 FAILED/stalled: when the job failed for unknown reasons and output files have not been
updated for a long time. An e-mail notification will be sent to the administrator rather than the
user.

19

 FINISHED PREMATURELY: when the job did not finish, but generated output files and there was
no obvious error message generated (this situation is typical in case of a timeout).

 FINISHED PREMATURELY/user notifed: when an e-mail notification was sent to the user after
job FINISHED PREMATURELY.

 MAINTENANCE: when a cluster is put in a maintenance mode (see Cluster administration), the
jobs marked in the database as running on that cluster will show up as “MAINTENANCE *”, the
star indicating that the database status of the job is still “running”. The database state can be
changed (see description of Display and update button later on) to “MAINTENANCE” proper to
mark this job for further consideration (e.g., to be re-queued later). If this change is not done
and the cluster comes back up with the jobs still reported as running by cluster scheduler, they
will show up as RUNNING again.

 UNKNOWN/update pending: used for transition status with JSDL clusters

Occasionally, any of the “finished” states can be shown augmented with a star (“*”). This may happen

when the database status of the job is “running”, but the job is no longer reported by the cluster

scheduler as being in the queue. In such a case, the Job admin tool is guessing the final state of the job

by analyzing the output files with the help of the Jobstatus function, specific for a given application,

in a manner analogous to how the cbsufinalize.aspx utility works. The star denotes this guessing

process. Normally, the database status is updated to this guessed status by the stardaemon.exe

program running periodically as a scheduled task (see Keeping track of job status), so that it is only on

rare occasions that the stars can be seen in Job Admin. An exception is the “MAINTENANCE *” status,

which will not be updated to MAINTENANCE” by stardaemon.exe. For this purpose, one has to use

the Display and update button (discussed later in this Section).

Active?: an “active” is a job which has not been put in an “archived” state. Technically, “archiving” a job

is equivalent to adding 1000 to the numeric representation of the job’s status in the jobstatus table.

Unless specified here, the Job Admin page displays only jobs which are not “archived”. An administrator

can “archive” jobs which are finished, old, and no-longer of interest for the sole purpose of avoiding

clutter in the Job Admin table. Jobs older than certain number of days (see description of setup.aspx

in INSTALLATION) are automatically archived by the stardaemon.exe utility program. “Archiving” a

job does not affect its jobs directory or files in any way. “Archived” jobs information can still be

displayed by Job Admin page if the filter in this field is set to No or Any.

Files: collection of links to various job-related files. The link log file: show typically displays the standard

output from the application and therefore is best suited for monitoring the progress of the job. The link

output will display the notification page as sent to the user by e-mail. The link DIR gives direct access to

the job directory via Windows file explorer (only available on machines within the Windows domain).

Action: collection of links providing job control features.

 STOP: (for running jobs only) will cancel the job (i.e., remove it from the cluster queue and
update the status to “CANCELED” in the jobstatus table), or stop the job (remove it from

the cluster queue without touching jobstatus).

20

 ARCHIVE: (for jobs NOT in the RUNNING state) will “archive” the job (see description of the field
Active? above).

 DEL: (for jobs NOT in the RUNNING state) will open a dialog allowing all the files of this job to be
deleted from both the file server and the ftp server.

 RESTART: will re-queue the job; one can select a new cluster (from among the clusters available
for a given application), timeout, the number of processes (for MPI applications), whether the
job needs to run alone (exclusively) on all nodes it uses (0 for non-exclusive, 1 for exclusive), and
whether to send a notification e-mail to the user.

 STAT: manually change database status of the job to FINISHED CORRECTLY (SC), FAILED (FL),
FAILED/USER INPUT (FU), or FINISHED PREMATURELY (PM). Note that clicking PM will not
notify the user of the status change – the proper NOTIFY option must be used for this purpose.

 NOTIFY: notify the user by e-mail about queuing of the job (S), start of the job (0), correct end of
the job (1), failure of the job (E), or premature end of the job (P).

Functions available through action buttons on the Job Admin page:

Display: force page refresh. Normally, the page will refresh itself every 5 minutes, unless the

corresponding control checkbox is un-checked.

Clear Cache & Display: clear the cache of job and node information collected from cluster schedulers

and display refreshed data; this automatically leads to re-population of the cache.

Display & update: archive all jobs with unambiguous end status (to un-clutter the display table), update

the database status of all finished (i.e., not in cluster queues) jobs which have not yet been handled by

stardaemon.exe, including sending e-mail notifications to users whose jobs ended prematurely, and

refresh the page.

Refresh checkbox: if checked, the page will be automatically refreshed every 15 minutes.

Unlock Admin: remove any locks set up by various BioHPC administrative functions during job status

update operations; typically, this button needs to be used only if such update operations failed for some

reason.

Status change checked: manually change database status of all “checked” jobs.

Stop/Cancel checked: stop (remove from cluster queue without changing database status) or cancel

(remove from cluster queue and change database status to “canceled”) all “checked” jobs.

Restart checked: re-queue all “checked” jobs. A dialog will be presented where the admin can specify

the following actions/parameters:

 whether or not to send and e-mail notification to the user when job starts; such e-mail may not
be necessary, for example, if the job being re-queued crashed due to hardware problems on the
cluster

 for each job, use the same submission parameters (cluster, number of CPUs, and timeout) as
when the job was initially submitted;

21

 use different submission parameters; in this case only the “checked” parameters will be
changed (to the same value for all jobs being re-queued), the un-checked ones will remain the
same (and still job-specific) as when the jobs were first submitted.

Most frequent use of the Restart checked button is to move a bunch of jobs queued on one of the

clusters to another cluster with free nodes.

Fix checked: gives direct access to the database entries for the selected jobs exactly as recorded in the

jobstatus table. All entries can be manually edited. Detailed knowledge of the structure of

jobstatus table (to be described in the Appendix) is required to use this option. Direct access to the

jobstatus entries for selected jobs is also provided directly from the Administration page, via the Fix

jobs button.

Delete checked: removes all the files related to the checked jobs from both the fileserver and the ftp

server.

An important aspect of job management is the cleanup of old job data. The output files generated by

jobs submitted through BioHPC are stored in the job directories on the file server, and (optionally) are

also replicated on the ftp server. Once in a while, directories corresponding to old jobs will need to be

removed to make space for the new jobs. The web tool for old job data removal, cleanJOBS.aspx, is

available from the Administration page by clicking on Remove old jobs data button. Here, the admin

can specify the time threshold and click on Remove data files to clean up space occupied by jobs older

than that threshold. What actually happens is that a special job is submitted to one of the clusters

(selected from a dropdown list) launching a program clean_old.exe, which performs the actual

clean-up work. Because of this job-like character of the cleanup operation, the cleanJOBS.aspx

page is treated like submission page of an application. It is configured as “hidden” (which makes it not

available through a public link) and accessible only to registered users (see Application administration

for more info on how to configure applications). Additionally, the “code-behind” allows the page to be

executed only by users with administrative privileges.

It should be stressed that removing old jobs data from the file server of ftp server does not remove the

corresponding records from the jobstatus table in the CBSUJOBS database. These records will stay

there indefinitely.

A similar problem sometimes occurs on remote clusters (see Section 6). Normally, the remote job

directory which stores files belonging to this job for its duration is removed after the output data is

transfer back to the main BioHPC job directory. However, the removal process may sometimes fail,

leaving the unused remote job directory behind. Over time, such stray directories may accumulate on a

remote cluster and take up a significant amount of disk space. To address this issue, BioHPC provides a

clean-up tool available by clicking the Remove old JSDL data button from the main administration page.

Using this tool, an administrator can list the expired remote job directories on all remote clusters and

remove them. Unlike in the case of the old data removal from the BioHPC file server, the cleanup of the

remote clusters is performed directly via ftp rather than by submitting a special clean-up job. Since the

22

number of left-over remote directories is usually fairly small, the clean-up process is short and a simple

ftp session is sufficient.

4.3 Cluster administration
Clicking in the link Administration and then on the button Manage clusters will produce a list of clusters

currently defined within the BioHPC installation.

The Edit links in the rightmost column of the table allow an administrator to configure settings for each

cluster. These settings, stored in table clusters in the CBSUJOBS database, are the following:

 Database ID: unique integer, automatically generated when the cluster is configured.

 Name: name of the cluster

 Status: a choice of
o Full maintenance: the cluster is off-line; if this is set, a window will appear where a

message to users can be entered; this message will be visible in the message box at the
bottom of each BioHPC web page; change of status to “Operational” will erase the
message.

o Partial maintenance: left for future development
o Operational: cluster is working normally and accepting jobs

 Scheduler: the following schedulers are currently supported
o vsched: custom Windows scheduler developed at Cornell Theory Center
o microsoft: native scheduler of Compute Cluster Server (CCS)
o JSDL: for remote clusters connected through JSDL (see Section 6).
o RT: native scheduler of BioHPC serving real-time clusters (if present). More info about

the RT clusters – in Section 5.

 MPI command: the beginning of the command used to launch MPI applications. On clusters
where the H:\ drive is permanently mounted this should be set to mpiexec -
machinefile machines.nodes. Otherwise (e.g. on most JSDL-connected clusters) the

proper command would be mpiexec -env CBSUH %CBSUH% -env CBSUT %CBSUT%
-machinefile machines.nodes. On clusters running vsched scheduler with MPIPro the

command is simply mpirun. Vsched clusters have to have the H:\ drive mounted on each
node. Other options (such as –np or –wdir) will be appended to this string when run.bat is
constructed.

 Binaries path: directory where sequential binaries are stored; must be visible from all nodes of
this cluster.

 Ptools path: directory where the parallel executables (launched through MPI) are stored; must
be visible from all nodes of this cluster.

 Extra string: reserved for future development

 CBSUH: root of the shared network drive where the job directories will be stored. Can be
specified as UNC name. If left empty, H: will be assumed, in which case the network drive will
have to be mounted as H:\ on each node of the cluster.

 CBSUT: local scratch drive on each of the compute nodes. DOS variables (such as %TEMP%)
accepted. If left blank, T: will be assumed.

 Maxnodes: maximum number of nodes that can be utilized by BioHPC on this cluster; if zero –
no limit will be assumed.

23

 CPUs per node: number of CPU cores on each node of this cluster. This parameter is used
mainly to determine the correct form of scheduler submission command. The number of
instances of a parallel application that can be run on each node is application-specific and
configured in Manage applications.

 RAM per node (GB): memory available on the node – this entry is currently not used

 HD per node (GB): size of the local scratch disk space on the node – this entry is currently not
used

 Priority: integer number, the priority in which this cluster will be considered by the internal
BioHPC metascheduler; the lower the number the higher the priority.

The Edit ACL links in the rightmost column of the table allow an administrator to configure access

control list (ACL) for each cluster. The ACL determines which users can submit jobs to the given cluster.

The options are

 Unrestricted access: all users are allowed

 Registered users only: all registered users will be allowed access

 Only users listed below: access will be restricted to a specific subset of registered users
identified by their user IDs provided in a text box below.

If a given user is not included in the cluster’s ACL, this cluster will not appear in the cluster selection

menu on any of the submission pages opened by this user – hence he/she will not be able to submit to

this cluster explicitly. The cluster will also be excluded from consideration by the metascheduler when

the “Auto” option is specified at submission time.

The cluster ACLs are very useful if a cluster has to be drained of BioHPC jobs or reserved for only a

subset of users. The ACL information is stored in the table clustersACL in the CBSUJOBS database.

4.4 Application administration
The link Manage applications on the main administration page produces a list of all available

applications and displays some of the attributes stored in table apps of the CBSUJOBS database.

Attributes of a given application can be edited by using the corresponding Edit link in the last column.

These attributes are:

 Database ID: unique application ID generated automatically when the application is first
configured.

 Name: string used as a link to this application from the left bar of BioHPC page.

 Description: optional short description of the program.

 Status: Hidden (no link appears on the main BioHPC page – useful for temporarily hiding the
application from the public), Internal (represented as an aspx web page within BioHPC – most
applications have this status), External (application is a link pointing to a different web server),
or Maintenance (application in this state will work only for administrators, others will get a
maintenance info message). If the application is thrown into the Maintenance status, a window
will appear below where an info message to the users may be entered; this message will appear

24

at the bottom of every BioHPC web page. The message will be cleared next time the application
status changes.

 Category: determines the main software category under which this application will be listed on
the right bar of BioHPC pages. Important for display purposes only. See Manage Categories later
on.

 Access: Everyone (available to everyone, including the “guest” user) or Registered (available to
registered user only). See User administration for more info.

 Program: name of the application executable (not used).

 Web page: name of the aspx file with the submission interface.

 Max guest jobs: maximum number of jobs with this application a guest user can have in cluster
queues at any given time.

 Max reg user jobs: maximum number of jobs with this application a registered user can have in
cluster queues at any given time.

 Preferred cluster: for jobs submitted with automatic cluster selection, this cluster will be
considered first by the BioHPC built-in meta-scheduler; if not available, other clusters will be
considered.

 Logfile timeout: if log file generated by the job is not updated for this number of minutes, the
job will be reported as stalled. Leaving this field empty means that no check for stall condition
will be performed.

Besides the main application attributes (stored in apps table), the administrator has to specify a

number of cluster-dependent attributes. These are:

 TIMEOUTS (in minutes): determine how long this application will be allowed to run on a given
cluster. If the timeout is exceeded, the job will be killed by the regardless of whether if
completed or not. The timeouts may be different for guests and registered users. If the timeout
for a given cluster/user group is entered as zero, the application will not be allowed to run on
this cluster for this user (i.e., on the submission page, this cluster will not be listed in the cluster
drop-down menu and it will not be considered when the “Auto” option is specified). Thus,
entering a zero timeout is the way to “turn off” a given application on a cluster. The timeout
information is stored in table timeouts of the CBSUJOBS database.

 CPUs/node: determines how many instances of the application executable may run
concurrently on a single node of a given cluster. This parameter is only meaningful for parallel
(or BioHPC-parallelized) applications, launched via MPI, when the exclusive/node flag is also
checked (see below).

 Exclusive/node: if checked, the application will occupy exclusively the nodes it is running on,
i.e., no other jobs will be dispatched to these nodes at the same time. If the application is an
MPI program, the maximum number of MPI processes per node will be equal to the
corresponding CPUs/node entry.

 RAM/node, HD/node : these fields are reserved for future development of the metascheduler;
for the time being, they should be entered as “0”.

Most applications can be safely submitted as non-exclusive (i.e. the exclusive/node flag should not be

checked). Exceptions include cases where

25

 an application (or a single MPI process of a parallel program) cannot comfortably “coexist” with
other applications because it needs to consume most of the node’s memory and/or local scratch
disk space,

 an application (or a single MPI process of a parallel program) is multi-threaded and able to
consume all of the node’s CPUs – running such an application in the company of others would
impair its multi-threaded performance. Examples of such applications include P-BLAST, P-
IPRSCAN, and P-HMMER.

The button Manage Categories, available from the main application administration page, allows the

administrator to define new application categories, edit names of or remove the existing ones, and

determine the order in which the main category buttons will be displayed on the left bar of the BioHPC

web pages (the lower the priority number, the higher up the button will be located). Each application

has to be assigned to one of the categories defined here (see description of the Edit link in the

application table). The assignment is for display purposes only: the link to the application’s aspx web

page will appear under its category button when the latter is clicked.

New applications can be configured using the Add new application button located on the main

application admin web page. This will generate a unique application ID in the apps table, and open a

dialog where the main attributes and timeouts for the application can be entered. Please note that the

Add new application operation merely configures a new application in the CBSUJOBS database. The

main task associated with adding applications is to create a corresponding submission page and

modifying a few other parts of the BioHPC code to work with this new page. In particular, one has to

make sure that the entry of enum tAppId (in file CbsuComm.cs, project CbsuComm) corresponding

to the new application has a numerical value matching the database ID of this application in the apps

table. More guidelines for adding new applications will be found in the Section 7 (currently under

construction).

Special applications. Two of the applications defined in the apps table, namely blastdb and

cleanJOBS, have administrative purposes and can only be run by BioHPC administrators. They are

configured as Hidden, so that they cannot be accessed through a public link. Administrative functions

performed by these applications (updating BLAST databases and cleanup of old jobs data) require a lot

of time and sizable computational resources, it is therefore important that they run as regular jobs on

compute nodes of the cluster rather than directly on the web server, for example. Programming such

resource-intensive administrative tasks as applications makes it possible to utilize standard job

submission procedures and thus helps keep the code of BioHPC simple. More information about the two

special applications can be found in Sections 4.2 and 4.6.

4.5 Site setup
The Site setup button provides access to the setup.aspx page which can be used to customize

various basic parameters of BioHPC site through the file web.config. setup.aspx can only be open

26

on the web server where BioHPC is running. In fact, the page has to be run as a part of the installation

process described in Section 3 and that’s where the details are given.

4.6 Sequence database administration
Data-mining applications offered by BioHPC, such as BLAST and HMMER, work by comparing one or

more query sequence (nucleotide or amino acid) to a set of known reference sequences. The reference

sequences are collected in a (usually big) file, customarily referred to as a sequence database. It should

be stressed, however, that such files are not databases in a sense of any commonly used database

engine (such as MS SQL Server) or query language and should not be confused with the CBSUJOBS

database holding the parameters of BioHPC and job attributes. From the point of view of BioHPC, the

sequence databases discussed in this Section are just files, properly formatted and accessible only to the

data-mining programs they have been designed for.

Sequence databases can be organized and subdivided using many different criteria, such as the type of

organism, the part of the genome they represent, or the research project the reference sequences

resulted from. This naturally leads to a multitude of database files, some of them public, and some,

private, many frequently updated. Before submitting a BLAST of HMMER job, the user specifies which of

the available sequence databases he/she wants to use. Before the job starts, all the requested database

files must be available on the local disks of all the compute nodes the job will be running on. This local

availability is very important if the network overhead (inevitable if the databases were to be stored on a

network drive) is to be avoided. It therefore makes sense for the biggest and most frequently used

databases to be replicated on all (or a subset of) compute nodes and stored permanently on local disks.

Other databases may be stored in one copy, for example, on a network drive visible to all BioHPC

clusters, and replicated on compute nodes as needed, right before the start of the job and only for the

job’s duration. BioHPC users have an option of using their own private databases, uploaded as FASTA

files upon jobs submission and automatically formatted before being replicated on the nodes assigned

to the job. If needed, such databases may be automatically stored on BioHPC file server for further use.

The button Manage BLAST databases available from the main Administration page takes us to the

database administration web tool described in detail in this Section. Analysis of this tool reveals the

principles behind the sequence database organization in BioHPC. The page offers are a few management

buttons, each corresponding to a specific type of a database:

Core databases: denotes standard files publicly available directly from the publishers (e.g. nr from NCBI)

and updated frequently. These files need to be replicated on local disks of all compute the nodes.

Clicking on the Core databases button will display statistics about the files currently available on

different clusters, with dates of last propagation and the date of last download from the publishers’

web/ftp sites. The button Manage will display an editable table where basic parameters of various file

can be configured (including names and publishers’ URL), new databases can be defined, and the ones

which are no longer needed can be deleted from the configuration. Clicking on Submit Changes (under

the table) will modify the appropriate entries in the sequence database configuration table dbfiles

27

in the CBSUJOBS database, but it will not modify the actual sequence database files. To download

current versions of the database files from the publishers (as configured in dbfiles table), click on

Download and format button. This will queue up a job (on a cluster selected from the drop-down list

below) executing a perl script update_blastdb.pl. The script will download the proper files, unzip

them if needed, format the FASTA files (using the standard formatdb program from the BLAST

distribution), and place the formatted files in the network directory

H:\CBSU\blastdb\<current> on the file server, where <current> denotes today’s date in the

yyyymmdd format (e.g., 20070828). A file current containing this date will also be created in

H:\CBSU\blastdb. Once the files are downloaded, formatted, and placed in

H:\CBSU\blastdb\<current>, they need to be propagated to the nodes. This is accomplished by

clicking on the Propagate button, which will queue a job on the cluster selected for propagation. Once

the job starts on one of the compute nodes of this cluster, it will execute a program called

propagate.exe which will fork into several threads as specified in the “concurrent nodes” text box

at the time of submission. Each such thread will update one node of the cluster, and then will get

“reused” to update another one, and so on, until all nodes are eventually updated. At the end of the

operation, the directory local T:\CBSU\blastdb\<current> on each node will be synchronized

with the central storage H:\CBSU\blastdb\<current>. The synchronization process is quite

intelligent – it does not touch files already in sync between the two directories, and the old

<current> subdirectory will be removed from the local storage.

Additional databases are stored locally on the nodes, don't change too often and sometimes require

special processing. They have to be manually downloaded and formatted (if needed) and then placed in

H:\CBSU\blastdata directory on the file server, from where they can be propagated to the nodes.

HMMER databases (Pfam) are in this category. Clicking on the Additional databases button will display

statistics about the files currently available on different clusters with dates of last propagation. The

button Manage will display an editable table where names and types of various files can be configured,

new databases can be defined, and the ones which are no longer needed can be deleted from the

configuration. Clicking on Submit Changes (under the table) will modify the appropriate entries in the

sequence database configuration table dbfiles in the CBSUJOBS database, but will not modify any

actual sequence database files. Once these files are manually placed in H:\CBSU\blastdata

directory on the file server, they need to be propagated over the nodes. This is accomplished by clicking

on the Propagate button, which will queue a job on the cluster selected for propagation. Once the job

starts on one of the compute nodes of this cluster, it will execute a program called propagate.exe

which will fork into several threads as specified in the “concurrent” nodes text box at the time of

submission. Each such thread will update one node of the cluster, and then will get “reused” until all

nodes are eventually updated. At the end of the operation, the directory local T:\CBSU\blastdata

on each node will be synchronized with the central storage H:\CBSU\blastdata. The

synchronization process is quite intelligent – it does not touch files already in sync between the two

directories.

Private databases are added by the users at the time of job submission. They are stored (in formatted

form) on the network drive, typically in directories H:\CBSU\blastdata1,

28

H:\CBSU\blastdata2, or in subdirectories thereof. Local copies may be stored locally on real-time

nodes. The Manage button will display a table, where all the attributes of the private databases can be

edited. Besides the standard attributes (names, type, location on H:\CBSU) one can also specify

whether or not to keep a local copy on the nodes of the RT cluster as well as the list of registered users

allowed access to a given file. Clicking on Submit Changes (under the table) will modify the appropriate

entries in the sequence database configuration table dbfiles in the CBSUJOBS database, but will

not modify any actual sequence database files. Also, records will be added to or removed from the table

userdbaccess, which controls access of registered users to various private databases. In order to

propagate the private database files to the RT compute nodes, use the button Synchronize local copies

of selected databases on RT nodes (this action will also propagate selected “Global” databases – see

below). A job will then be queued on the RT cluster to execute a program called syncRT.exe. Upon

completion of this job, the directory local T:\CBSU\blastdata1 on each node of the RT cluster will

contain all private and global databases specified to be propagated. The synchronization process is quite

intelligent – it does not touch files already in sync between the local and the shared directories. Note

that the user access to private sequence databases can also be handled from the Manage users page.

Global databases are stored on the network drive, don't change too often and sometimes require

special processing. They have to be manually downloaded and formatted (if needed) and then placed in

their respective subdirectories on H:\CBSU. Local copies may be stored locally on real-time nodes. The

Manage button will display a table, where all the attributes of the global databases can be edited. The

attributes include the names of the database and the corresponding file, sequence type (nucleotide or

protein), the directory under H:\CBSU where these files are located, and the category to which a given

database belongs. Categories of global databases are introduced for organizational purposes only and

can be managed using the Manage categories button. For each database, one can also specify whether

or not to keep a local copy on the nodes of the RT cluster as well as whether the file will be available to

all users or only to selected ones. In the latter case, the access privileges have to be configured on the

user level, using the Manage users page. Clicking on Submit Changes (under the table) will modify the

appropriate entries in the sequence database configuration table dbfiles in the CBSUJOBS

database, but will not modify any actual sequence database files. Also, records will be added to or

removed from the table userdbaccess, which controls access of registered users to various private

databases. In order to propagate the private database files to the RT compute nodes, use the button

Synchronize local copies of selected databases on RT nodes (this action will also propagate selected

private databases). A job will then be queued on the RT cluster to execute a program called

syncRT.exe. Upon completion of this job, the directory local T:\CBSU\blastdata1 on each node

of the RT cluster will contain all private and global databases specified to be propagated. The

synchronization process is quite intelligent – it does not touch files already in sync between the local and

the shared directories.

A record of sequence database updates on compute nodes is kept in table dblog in the CBSUJOBS

database. This table is updated every time a propagation job is submitted and then again when this job

ends. The update statistics/history information displayed by the database administration tool is read off

this table.

29

5 Real-Time Clusters
Some jobs submitted to BioHPC are short, one-processor tasks with simple input and output. For

example, sequence retrieval from a database or a quick BLAST analysis of a few query sequences fall into

this category. BioHPC offers a possibility to process jobs like these in real time (as opposed to the regular

batch mode used for more time consuming jobs) on a separate dedicated cluster, referred to as RT (Real

Time) cluster. An RT cluster is also required for the personal database registration functionality of

BioHPC’s P-BLAST application.

Similarly to the “regular” clusters, an RT cluster is a set of nodes under control of a cluster scheduler.

While any of the available schedulers could be used in principle (for example, CCS), BioHPC offers its

own scheduler, referred to as the RT scheduler, implemented using MS SQL database and the standard

jt.exe windows task scheduling tool.

An RT cluster must consist of at least one Windows Server 2003 or Windows Server 2008 machine

satisfying the following conditions:

 be in the same Windows domain as BioHPC web server and have access to the common network
share H:\ (although this share does not have to be permanently mounted as H:\)

 have a local scratch disk assigned as T:\, with the directory T:\CBSU

 the BioHPC IDU must have administrator privileges

 utility programs runrt.bat, rtexe.exe, RTclean.exe (all parts of BioHPC) must be
available in T:\CBSU

The BioHPC RT scheduler consists of the following components:

 Two tables in CBSUJOBS database: rtnodes (holds information about the nodes comprising

the RT cluster) and rtjobs (holds information about jobs submitted to the RT cluster).

 The program RTsched.exe (included in BioHPC - the actual scheduler) running on the web
server as a scheduled task, started at server boot time and running continuously thereafter with
IDU credentials.

 The jt.exe task scheduling tool (Microsoft Task Scheduler Command Line Utility) in H:\CBSU
network directory.

 runrt.bat, rtexe.exe, RTclean.exe – utility programs stored in local T:\CBSU
directory on each of the RT cluster nodes.

 A set of APIs to communicate with the RT scheduler form within the BioHPC web pages (a part
of BioHPC).

 RT cluster administration application (analogous to the Compute Cluster Administrator in CCS);
this is implemented as a web page available from the main BioHPC administration page by
clicking on the Real-Time Scheduler button. It provides basic functionality for monitoring of the
RT compute nodes and control of the jobs submitted to RT cluster at the cluster level (rather
than BioHPC level).

30

The RT APIs called from within BioHPC interact with the scheduler RTsched.exe via the database

table rtjobs. For example, submitting a job through an API function is equivalent to adding a new line

to rtjobs containing, among other entries, the unique scheduler job ID of the new job (not to be

confused with the BioHPC job ID assigned by BioHPC) and a flag describing this new job as queued up

and waiting. Likewise, the rtjobs table is consulted by the APIs when RT jobs are to be listed, or

when an RT job needs to be canceled. The role of the scheduler process RTsched.exe is to

periodically (every 30 seconds) examine the rtjobs table and reconcile its content with what is

happening on the RT compute nodes. Thus, for a job flagged as waiting, RTsched.exe will checks for

RT node availability and send this job to one of the free nodes if such are found and then update the

job’s flag in rtjobs to “running”. On the other hand, a job flagged in rtjobs table as “running” will

be looked for on the compute node and if is not found there any longer, its status in rtjobs will be

updated to “finished”. While performing any job-related actions on the compute nodes, such as job

submission, listing, or killing, the RTsched.exe program contacts the compute nodes via the jt.exe

program, i.e., it remotely schedules various “scheduled tasks” to be executed on these nodes. This is

why the BioHPC’s IDU has to have administrator privileges on the compute nodes.

6 Remote Clusters
BioHPC is equipped with mechanisms which allow submission of jobs to remote clusters located in

different domains than the rest of the BioHPC infrastructure. While handling of remote clusters is

integrated rather seamlessly in BioHPC both from the users’ and from the administrator’s perspectives,

there are a few specific issues here that the administrator should be aware of. This Section describes

how these issues are addressed in BioHPC.

In essence, a remote cluster differs from a local one in two basic aspects. First, the cluster scheduler is

not directly accessible by the BioHPC’s Interface Domain User (IDU) and therefore jobs cannot be

submitted and controlled using the standard set of scheduler APIs. This problem is solved by using the

web service-based job submission system based on the Job Submission Description Language (JSDL)

which has to be deployed on a remote cluster. BioHPC features wrappers around JSDL functions

providing syntax and functionality mimicking those of the local scheduler APIs. Second, the fact that the

remote cluster is in a different network and Windows domain than BioHPC means that the remote

compute nodes have no direct access to the BioHPC’s job directories. Therefore, jobs submitted to a

remote cluster cannot read the input data from or deposit output data directly to the domain that

BioHPC is in. To address this problem, BioHPC uses the ftp protocol to transfer jobs’ data back and forth

between the local and remote domains.

The rest of this Section provides more specifics on how BioHPC handles remote clusters.

In order to be compatible with BioHPC, a remote cluster must satisfy the following conditions:

 The cluster must be running Windows Server 2003 with Compute Cluster Server (CCS) pack or
Windows HPC Server 2008 with the native MPI library and scheduler.

31

 The JSDL-based job submission web service has to be deployed (it comes standard with HPC
Server 2008); the URL of this web service (referred to as JSDLAddress) has to be known
(something like https://host.your-address.com/myjsdlcluster.svc)

 There must be a dedicated domain account, such as domain\username (referred to as
JSDLUserName with password JSDLUserPass) on the domain of the remote cluster; BioHPC will
use this account to connect to the cluster via the JSDL web services and ftp (see below).

 Similarly as in the case of local clusters, there must be a network share (referred to as JSDLdir)
accessible from all nodes of the remote cluster. A UNC path (such as
\\fileserver\share\biohpc) must be available. This directory will play a role analogous
to the H:\ drive on local clusters, i.e., it will host the subdirectories CBSU, CBSU\JOBS, as well
as the binaries and ptools directories. All the binaries of the applications and tools will have to
be copied to these directories.

 There must be an ftp server, e.g., ftp.your-address.com (referred to as JSDLftpServer),
accessible to the user JSDLUserName. The JSDLdir has to be accessible for writing via this ftp
server.

Let’s take a closer look at how various BioHPC functions handle remote clusters. As mentioned earlier,

all mechanisms are completely transparent to users and administrators alike. The explanations below

are provided mainly for completeness and better understanding of BioHPC design.

Job submission. As with local clusters, the job directory is first prepared locally in BioHPC, containing all

the user input data and the run.bat script. The remote cluster submission API packs the content of

the job directory into a zip archive and then uses ftp to create a corresponding job directory on the

remote cluster (specifically, as a subdirectory of JSDLdir\CBSU\JOBS) and transfer this archive, along

with run.bat, to that directory. The job (i.e., run.bat) is then submitted on the remote cluster via

JSDL web service in the remote job directory and the database status of the job is set to QUEUED. Once

the job starts executing, one of the first commands in run.bat (specially constructed for a remote

cluster) will unpack the zip archive, extracting the actual input data into the remote job directory, from

where it will be picked up by the compute nodes assigned to the job on the remote cluster.

Keeping track of job status. As on the local clusters, the program cbsufinalize.exe is invoked in

the beginning of run.bat with indicator “0”, signaling that the job just started. Normally, this program

calls up the cbsufinalize.aspx web page (a part of BioHPC) which changes the database status of

the job to RUNNING. In the case this web page cannot be accessed from the remote cluster,

cbsufinalize.exe will just create the file jobID.STATUS.0 in the remote job directory. The

presence of this file will indicate (to anyone who looks) that the job has started. This file will be later

detected by the utility daemon JSDLupdate.exe, running periodically on the BioHPC web server and

scanning all the remote job directories through ftp (see description of JSDLupdate.exe below). If

the file jobID.STATUS.0 is detected, JSDLupdate.exe will call cbsufinalize.aspx (more

specifically – a public method exposed from that page) to update the job’s database status to RUNNING.

All subsequent changes in the database status of a remote job as well as output data transfer from

finished remote jobs are also handled by JSDLupdate.exe.

https://host.your-address.com/myjsdlcluster.svc
file:\\fileserver\share\biohpc

32

JSDLupdate.exe. This utility program is a part of BioHPC. It handles changes to database job status

of remote jobs, imposition of timeouts on remote jobs, and transfer of output data from finished

(including canceled and failed) remote jobs. It is scheduled to run periodically on the web server. During

each run, the program scans (via ftp) all active remote job directories on remote clusters and for each

such job it performs the following actions:

 If the current database job status of this job is QUEUED, the file fileID.STATUS.0 is present,
and the job is reported as “in queue” by the remote scheduler, then database job status is
changed to RUNNING.

 If the current database job status of this job is RUNNING and the job is reported as “in queue”
by the remote scheduler, then JSDLupdate.exe checks whether the job exceeded the
timeout; if so, it sends the “cancel” command to the remote scheduler, terminating the job, and
initiates the transfer of output data.

 If the current database job status of this job is RUNNING and the job is reported as “out of
queue” by the remote scheduler, then JSDLupdate.exe attempts to transfer the output
data. If the transfer operation is successful and finished, the database job status is changed to
an appropriate “finished” state using a call to the cbsufinalize.aspx page and the remote
job directory is deleted. A completed data transfer is indicated by the creation of the file
jobID.filetransfer.done in the local (i.e., in the BioHPC domain) job directory. If the data
transfer was not finished or failed, this file will not be created and the database job status will
remain RUNNING. In such a case, JSDLupdate.exe will come back to this job when it runs
next time and attempt the output transfer again.

 If the current database job status indicates one of the “finished” states, but the local job
directory does not contain the file jobID.filetransfer.done, JSDLupdate.exe
attempts to finish off the output transfer.

Details of output data transfer through JSDLupdate.exe. The idea behind the transfer of output

data from remote jobs is to first create a zip archive (called jobIDdataout.zip) of the remote job

directory, transfer it via ftp to the local job directory, and unzip it there. When JSDLupdate.exe first

detects (by querying the remote scheduler) that a remote job has ended, it initiates the output transfer

process by scheduling the jobIDdataout.zip archive to be created. This scheduling is done in one of

two different ways, configurable through setup.aspx:

 By submitting a special “zipping” script makezip.bat (provided in BioHPC distribution) as a
job to the remote cluster queue. The script must be present in the remote directory
JSDLdir\CBSU\JOBS. This is the only option when the BioHPC administrators do not have
administrative access to the remote cluster. If the remote cluster is busy, this “zipping” job may
have to wait in queue before it is executed.

 Using the simple zipdaemon.pl utility program provided (currently implemented in perl),

scheduled to run periodically on the remote cluster and call makezip.bat for all jobs for
which entries have been created by JSDLupdate.exe in the remote directory

JSDLdir\CBSU\JOBS\zipdaemon. This option is preferred, but available only on those

33

remote clusters where the BioHPC administrators have administrative access (to be able to
configure zipdaemon.pl as a scheduled task).

Having scheduled the creation of the archive, JSDLupdate.exe leaves a file called

jobIDzip.dispatched in the local job directory to mark this fact, which completes the processing of

this job in this round of JSDLupdate.exe. The daemon will return to this job at its next invocation –

this time it will check if the zip archive has already been created. If not (and usually it takes some time),

the daemon will leave the job alone until next time. If the archive is there and is detected as complete (a

jobIDzip.DONE file is created in the remote job directory after a successful zipping), the daemon will

transfer it via ftp to the local job directory, unzip it there, mark the successful transfer with the

jobID.filetransfer.done file, delete the remote job directory, and change the database job status

to the appropriate “finished” state through the cbsufinalize.aspx function. Within this general

scheme, JSDLupdate.exe is able to detect various error conditions that may occur during the

zipping/transfer process and correct them by rescheduling the zip file creation from scratch. When the

output data transfer is complete, all the output files are available in the local job directory and can be

accessed by the users in a normal way using the showfile.aspx web page.

Job monitoring. Monitoring and control of remote jobs during execution is accomplished in exactly the

same way as it is done for local jobs, that is, using the showfile.aspx and cbsujob.aspx web

pages, typically pointed to by links in the notification e-mails. These pages are “aware” of the fact that in

the case of remote jobs any files they attempt to retrieve are located in remote job directories and need

to be transferred via ftp before being presented to the user. Thus, both job control tools are completely

transparent, although accessing remote files generally takes longer than accessing local files.

34

7 PROGRAMMER’S GUIDE

[UNDER CONSTRUCTION]

8 APPENDIX

[UNDER CONSTRUCTION]

8.1 Structure of run.bat script

[UNDER CONSTRUCTION]

8.2 CBSUJOBS database

[UNDER CONSTRUCTION]

8.3 Programs and what they do

[UNDER CONSTRUCTION]

35

